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ABSTRACT 

The total-power output from a nuclear reactor can be increased by tailoring the 
axial-power shape if reactor power is limited by fuel-centerline temperature. The po­
tential power gains and the axial-power shape required to obtain a constant fuel­
centerline temperature are calculated using steady-state heat-transfer calculations on a 
long fuel rod cooled externally by forced convection. Steady-state two-group neutron dif­
fusion theory is used to predict the axial-fuel loading required to obtain the desired axial-
power shape. Fuel loadings and neutron-flux distributions are presented for various 
axial-power shapes required in a reflected, water moderated, and cooled reactor. 
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AXIAL POWER TAILORING TO OBTAIN CONSTANT FUEL-CENTERLINE 


TEMPERATURE IN A NUCLEAR REACTOR 


by Harry W. Davison 


Lewis Research Center 


SUMMARY 


When the power output from a nuclear reactor is limited by the temperature of the 
fuel, the power can be increased by tailoring the axial-power distribution to produce a 
constant fuel- centerline temperature. Heat- transf er and neutronic calculations have 
been made to determine (1)the potential power gain which can be obtained by power tail­
oring, (2) the axial-power shape required, and (3) the axial-fuel distribution required to 
obtain the required axial-power shape. 

The steady-state heat-transfer calculations were made for a long fuel rod cooled by 
forced convection to an incompressible coolant. The neutronics calculations a re  based 
on the one-dimensional diffusion theory using two energy groups. The results of this 
study indicate that the power of an unreflected, axially unzoned reactor, limited by fuel­
centerline temperature, could be increased by at least 50 percent by tailoring the axial-
power shape. When the convective film coefficient is constant, the required axial-power 
shape is exponential. An exponential-power shape can be obtained by appropriate design 
of the end reflectors and by adjusting the axial-fuel distributions. When the neutron re­
flectors at the coolant inlet and outlet ends of the reactor are identical, the maximum-
fuel loading is required at the coolant inlet end of the reactor. The maximum and aver­
age fuel concentrations required to maintain reactor criticality are larger for small 
reactors than for large reactors. 

Although the required axial-power shape and fuel distribution were calculated for a 
system having a constant film coefficient, the change in the required axial-power shape 
caused by small  axial variations in the film coefficient was estimated. 

INTRODUCTION 

In power reactors it is desirable to extract the maximum power per unit volume of the 
system for most efficient operation. The thermal-power capability of a reactor depends 



on the magnitude of the operating limits. These limits are imposed on parameters such 
as fuel or component temperatures, coolant temperature, coolant flow rate, or heat flux 
to permit safe operation of the reactor. If reactor power is limited by fuel temperature 
or heat flux, which depend on the power shape in the reactor, reactor power can some­
times be increased by tailoring or shaping the power distribution. 

One method of power tailoring relies on distributing or  zoning the nuclear fuel within 
the reactor to obtain the desired power shape. Fuel distributions (fuel zoning) required 
to produce a f l a t  radial power distribution have been investigated by Goertzel and Loeb 
(ref. 1) and by Bussard and Delauer (ref. 2). Barth and'Haling (ref. 3) investigated 
axial-fuel distributions required to obtain an optimized-power distribution based on crit­
ical heat-flux requirements in a boiling water reactor. 

In this report, the focus of attention is on axial-power distributions required when 
reactor power is limited by fuel-centerline temperature. If reactor power in an unzoned 
reactor is limited by fuel-centerline temperature, there is usually only one spot in a fuel 
rod where the centerline temperature reaches the temperature limit. At all other axial 
positions along the fuel centerline, the temperature is below the temperature limit. The 
total fuel-rod power and reactor power can be increased by adjusting the axial-power 
shape so that the fuel-centerline temperature reaches the temperature limit and is con­
stant along the entire length of the fuel rod. Axial-power tailoring to obtain a constant 
fuel-centerline temperature is desirable to obtain higher reactor powers. Axial-power 
tailoring would also allow a reduction in reactor size while maintaining the same reactor 
power, providing the reactor is not criticality limited. 

The purpose of this report is 

(1) to illustrate the potential gains in reactor power that might be obtained by tail­


oring the axial-power distribution when reactor power is limited by fuel­
centerline temperature 

(2) to determine the axial-power distribution (hereinafter called the optimum axial-
power shape) required to produce a constant fuel-centerline temperature 

(3) to determine the fuel distribution required to produce the optimum axial-power 
shape. 

The potential power gains, as a result of axial-power shaping, and the optimum 
axial-power shape are determined as a result of an analytical, steady-state, heat-
transfer analysis on a fuel rod which is cooled externally by forced convection to an in­
compressible coolant. The fuel-material distribution required to produce a constant 
fuel-centerline temperature is calculated using the one-dimensional, two-group, steady-
state, neutron diffusion theory. 
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HEAT-TRAN S FER ANA LYS I S 

The total reactor power that can be obtained with and without a tailored axial-power 
distribution and the axial-power distribution required to produce a constant fuel­
centerline temperature are derived in appendix A. The potential gain in reactor power is 
based on the following reactor model: 

(1) The fuel element is a long cylindrical rod which is cooled externally by incom­
pressible, coaxial, forced-convection flow. The fuel element operates at steady state 
and is heated internally by fission of the fuel material. The convective film coefficient 
and thermal conductivity of the fuel are independent of axial position. 

(2) The radial power distribution in the reactor is constant and is unaffected by axial-
power tailoring. 

(3) Reactor power is limited by fuel-centerline temperature, that is, the maximum 
reactor power is obtained when the temperature of the hottest spot in the hottest fuel 
element in the reactor reaches a prescribed limit. 

The total reactor power that can be obtained with a tailored axial-power shape is 
given in equation (A31) of appendix A.  

Pe = FC (e  - e,) exp - - 11 (3 -

The dimensionless parameter p is defined in equation (A13). It is a measure of the 
sum of the temperature rise across the convective coolant film and across the fuel rod 
relative to the total coolant-temperature rise across the reactor. Beta depends on the 
coolant flow rate and heat capacity, the convective film coefficient, the radial power dis­
tribution in the fuel rod, and the dimensions and thermal conductivity of the fuel. In this 
study, p will be treated as a thermal-hydraulic-design parameter which influences the 
axial-power distribution, and, consequently, affects total reactor power. As indicated 
in equation (A13), p could vary from zero to infinity. For most pressurized water 
reactors, for example, p is about 10. 

The reactor power obtained with a constant fuel distribution (untailored axial-power 
shape) is given by equation (A39). 
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(e, - e2) COS - - COS ­[ E) E)] 
+ ­cos-t)1 +($g" 

where Pd is a function of the parameters p and the axial-power shape; that is, the 
values of xl, x2, and x3 depend on the axial-power shape. The axial-power shape in 
an unreflected reactor having a uniform fuel distribution is described by a cosine function 
(xl = 0 and x2 = x3 = 1). When neutron reflectors are added to both the coolant inlet and 
outlet ends of the reactor, however, the axial-power shape is flatter and can be approxi­
mated by a "chopped cosine" (xl > 0 and x2 <x3). The chopped cosine axial-power 
shape is normally described by the ratio of the maximum to average power generation 
rates np rather than in te rms  of xl, x2, and x3. 

With the same fuel-temperature limit, coolant flow, and coolant outlet temperature, 
the power that can be obtained by power tailoring relative to that which would be obtained 
without power tailoring is 

'd cos - - cos -E) t) 
Because the coolant flow and outlet temperature are the same, the power gain is achieved 
by reducing the coolant-inlet temperature. 

The ratio Pe/Pd is shown in figure 1as a function of p and nP' The potential 
power gain that can be achieved by power tailoring an unreflected reactor having a con­
stant fuel distribution is described by the curve labeled nP = 1.57. The other curves 
(nP < 1.57) represent the potential power gain that can be achieved by power tailoring 
reflected reactors initially having constant fuel distributions and a ratio of maximum-to­
average power generation rates of nP' The potential power gains are less for large 
values of p than for small  values of p. However, even for large values of p ( p  > 10) 
tailoring the power shape in an unreflected reactor would allow about a 50-percent in­
crease in reactor power. When p = 10 (as it is in many pressurized water reactors) o r  
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Figure 1. - Potential gain in  reactor power which might be achieved by axial power tailoring when reactor 
power is limited by fuel centerline temperature. Reactor powers are calculated for same coolant flow, 
coolant effluent temperature, and maximum fuel centerline temperature. 

greater, the potential power gain obtained by axial-power tailoring is less for  reflected 
reactors than for unreflected reactors. For example, the power of an unreflected 
(nP = 1.57), pressurized water-moderated, reactor, which is limited by fuel-centerline 
temperature, could be increased by at least 50 percent by tailoring the axial-power shape 
to produce a constant fuel-centerline temperature. If this reactor had neutron reflectors 
at the coolant inlet and outlet ends such that n

P 
= 1.10, the power could be increased by 

only about 10 percent by axial-power tailoring. The reactor power gain is smaller in the 
second example because the initial (untailored) reactor power of a reflected reactor is 
higher than the initial reactor power of an unreflected reactor. The final (tailored) 
reactor power would be the same in both cases. 

These indicated large power gains may not actually be achievable because reactor 
power may be limited by some parameter other than fuel temperature before the calcu­
lated power gain can be achieved. Although the power gained by axial-power tailoring 
may not be as large as that indicated in figure 1, a lesser increase in power would still 
be an advantage. 

Having determined the potential reactor-power gains that might be achieved by axial-
power tailoring, what is the axial-power distribution required to produce a constant fuel­
centerline temperature ? The required axial-power shape is exponential, and is defined 
in equation (A29). 
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This power shape is shown in figure 2 for various values of p. The maximum power is 
required at the coolant-inlet end of the reactor where the coolant temperature is lowest. 
The minimum power is required at the outlet end where the coolant temperature is 

L


5 3t\ Thermal-
I \ hydraul ic 

factor,2h B\ 
1 

0 . 2  . 4  .6 .a 1.0 
Relative distance along fuel, (x - xl)/(x2 - XI) 

Figure 2. - Axial-power distribution required for constant 
fuel-temperatu r e  distribution. 

highest. The power shape required for  larger values of p is flatter than that required 
for smaller p values. This is because larger values of p indicate smaller coolant-
temperature rises relative to the temperature rise across  the fuel and convective coolant 
film. Therefore, only a slight reduction in the axial power from inlet to outlet is re­
quired to compensate for  the small  coolant-temperature rise. 

The previous discussion is based on the assumption that the parameter p is inde­
pendent of axial position. Actually, the film coefficient may vary along the length of the 
fuel element as the coolant temperature increases. The axial-power distribution re­
quired for small axial variations in film coefficient is estimated with equation (A24)of 
appendix A. 
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The factor al is a measure of the total change in the film coefficient along the length of 
the.fuel element, and it can be calculated using equation (A22). The change in the re­
quired axial-power distribution caused by small variations (a1<< p)  in the film coeffi­
cient is illustrated in figure 3 where the ratio Y(x, p,  al)/Y(x, 0, 0 )  is presented as a 

Thermal-
hydraul ic Measure of total change 

d I factor, in f i lm coefficient 
$ B along length of fuel rod,-2 1.10 0.6 a1 

function of axial position and al. For many reactors cy1 is small (-0.1< a1< 0.1). 
Positive values of al result when the convective film coefficient decreases with tem­
perature. This means that the heat-transfer resistance is lower at the coolant-inlet end 
than at the outlet. Therefore, the power at the inlet must be higher and that at the outlet 
lower than would be required with a constant film coefficient (a1= 0) .  The result is a 
steeper power shape when a1 > 0 .  Conversely, negative values of al are caused when 
the film coefficient increases with temperature, The required axial-power shape is 
flatter than that required with a constant film coefficient because a smaller reduction in 
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power is required to compensate for the coolant-temperature rise. 
The previous discussion has illustrated the potential reactor power gains that might 

be achieved by tailoring the axial-power shape and has established the axial-power shape 
needed to obtain a constant fuel-centerline temperature. The next problem is to deter­
mine whether the axial-power shape can be tailored to produce a constant fuel-centerline 
temperature and how this tailoring can be done. In this analysis it will be assumed that 
the film coefficient is constant. When the film coefficient is constant, the required 
axial-power shape is an exponential as indicated in equation (A28). 

NEUTRONICS ANALY S IS 

There are several methods of power tailoring available to the reactor designer. 
The most common methods are achieved by design of a neutron reflector or  by appro­
priate distribution of fuel or  absorber materials. 

In this study, power tailoring will be attempted by adjusting the fuel distribution 
(fuel zoning) and by reflector design. 

Physically, the fuel distribution could be adjusted by varying the isotopic proportion 
of fissionable material in the fuel rod. For example, if uranium is used as fuel, the 
proportion of uranium 235 to uranium 238 could be adjusted to obtain the required dis­
tribution of fissionable material in a constant-diameter fuel rod. In the following dis­
cussion the required fuel distribution is expressed in terms of the macroscopic fission 
cross  section Cf. The fuel distribution required to obtain an exponential axial-power 
shape in a reflected reactor is derived in appendix B. 

The neutronics calculations are based on a one-dimensional steady-state diffusion 
calculation. Two energy groups of neutrons are assumed, such that all fissions result 
from the absorption of thermal neutrons. The fission neutrons all appear with the same 
energy, which is higher than the thermal energy. These fast neutrons are lost from a 
unit volume of reactor by diffusion and by slowing down to thermal energies. The 
thermal neutrons are formed by the slowing down of the fast neutrons. They a re  lost 
from a unit volume of reactor by diffusion and absorption in both fuel and nonfuel mate­
rials. The effect of neutron reflectors located at both ends of the reactor is simulated 
by specifying neutron albedos for both the fast and thermal fluxes. The fast and thermal 
neutron fluxes are represented by equations (B14) and (B22) in appendix B. 

8 




f.i 

r 1 

Cp2(X) = A3exp - + A4exp - ­(3 (3 


The parameters y1 and y can be related to the heat-transfer parameters through 
equations (B37) and (B35). 

The coefficients A17 A2, A3, and A4 are  given in iatic 
and (B28). The coeffici&tspA1 -and A2 depend on the core length, the fast-neutron 
properties of the core, and the fast-neutron albedo at both ends of the reactor. The 
coefficients A3 and A4 depend on A1 and A2, the thermal properties of the core, 
and the thermal-neutron albedo at both ends of the core. The fuel distribution required 
to produce an exponential axial-power distribution is 

The required fuel distribution depends on 

(1)the fast and thermal-neutron diffusion coefficients D1 and D2 

(2) the thermal-neutron absorption cross  sections of nonfuel materials CaN 


(3) the removal cross  section for fast neutrons CR 
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(4) the number of neutrons produced as a result of thermal-neutron absorptions in 
the fuel r ]  

(5) the length of the reactor X2 - X1 
(6) the fast and thermal neutron albedo at both ends of the reactor K1,1, K2,1, 

K1,2’K2,2 

(7) the exponential coefficient used to describe the axial-power shape y. 

Because of the large number of independent variables involved (eleven) in the deter­
mination of fuel tailoring, it is desirable to reduce the number of variables by selecting 
a specific type of reactor for analysis. A water moderated and cooled reactor was 
selected for this analysis. The reactor is fueled with uranium 235, and contains alumi­
num structural components. The following reactor parameters, obtained from refer­
ences 4 and 5, were used in this study: 

Fast neutron diffusion coefficient, D1,cm . . . . . . . . . . . . . . . . . . . . . .  1.42 
Thermal neutron diffusion coefficient, D2,cm.  . . . . . . . . . . . . . . . . . .  0.262 
Fast neutron diffusion length, L1,cm . . . . . . . . . . . . . . . . . . . . . . . .  5.95 
Thermal neutron diffusion length, L2,cm . . . . . . . . . . . . . . . . . . . . . .  4.10 
Neutron removal cross section, CR, cm -1 . . . . . . . . . . . . . . . . . . . . .  0.0398 
Number of neutrons produced per thermal neutron absorbed in fuel, . . . . . . .  2.08 
Number of neutrons produced per fission, v 

Ther ma I 
Fast 

Thermal-
hydraul ic 

5 - factor, 
B 

Figure 4. -Neutron f lux distr ibution in reac­
tor  wi th  exponential axial power shape 
Y(x) = Ylexp-(xlp). Reactor length, 
120 centimeters; n o  thermal leakage from 
reactor (K1,z = K2,2 = 1). 
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Figure 5. - Fuel distr ibution required to 
produce exponential axial-power distr ibu­
t ion Y(x) = Ylexplx@). Reactor length, 
120 centimeters; n o  thermal leakage from 
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It will be assumed that the reactor length is 120 centimeters and that it has a moder­
ating reflector at both ends so that the fast-neutron albedos are zero (K1, = K2, = 0). 

The axial neutron-flux distribution and the axial-fuel distribution required to main­
tain a constant fuel-centerline temperature are illustrated in figures 4 and 5 for three 
different axial-power shapes (3 values of p) .  The fast and thermal neutron-flux distri­
butions for three different axial-power distributions are shown in figure 4. The re­
flector at the coolant-inlet end of the reactor and the reflector at the outlet are identical 
and are designed such that there is no thermal-neutron leakage from the reactor 

(K1, = K2, = 1). Although the two reflectors are identical, the neutron-flux distribu­
tions are asymmetric. The asymmetry in the flux distribution is caused by the asym­
metry in the fuel distribution (see fig. 5) required to produce an exponential-power shape. 
More fuel must be added to the inlet end than to the outlet end because a higher power is 
required at the inlet end. The fuel distribution required to produce a flat power shape is 
symmetric and is lower in the center than at either end. Although in this example the 
fuel content remains constant over the central 60 percent of the length of the fuel rod, 
this region of constant-fuel content depends on the length of the fuel, the neutron removal 
cross section, the diffusion coefficient, and the diffusion length. 

4­
-

Thermal­
2- hydraul ic 

factor,
P 

1-- 0.5 
. a - 1.0--

' 5 . 6 -- \ 
IO 

w .4-
- \ 

c \c 

I 2  . 2 ­
u -
m

L L  
. l ­-.a!!­

.M­ 
-
.M­

-

.02-

O l N 
10 20 40 60 100 200 400 600 

Reactor length, X2 - Xp cm 

Figure 6.  - Fuel content required to produce expo­
nential axial-power distr ibution Y(x) = Y1 
exp-(x/p). No thermal leakage from reactor 
(K1, 2 = K2,2 = 1). 
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It is desirable to learn what fuel distributions are required for different reactor 
lengths. The maximum and axially averaged values of fuel content for various reactor 
lengths are illustrated in figure 6. Again the thermal albedos at the inlet and outlet ends 
of the core are one. The smallest reactors that can be made critical while maintaining 
an exponential axial-power shape (Y(x) = Y1 exp(-x/p) are represented by the vertical 
lines. For example, the smallest reactor that could be made critical while maintaining 
an axial-power shape of the form e’X@ = 1)is about 27 centimeters long. 

Typically, smaller reactors require larger fuel loadings than larger reactors. For 
example, the maximum-fuel content and the axially averaged fuel content required to 
obtain an axial-power shape of the form = 1)in a 50-centimeter-long reactor a re  
0.11 and 0.023 reciprocal centimeter, respectively. The maximum and average fuel con­
tent required to maintain the same axial-power shape in a 100-centimeter-long reactor 
are 0.078.and 0.017 reciprocal centimeter, respectively. 

If a reactor is to be designed with an exponential-power shape and if the maximum 
fuel content Cfm is limited, the reactor length can be increased to obtain the desired 
power shape. If, however, an exponential-power distribution is desired in an existing 
(fixed length) reactor, it may be possible to increase the fuel content Cfm to obtain this 
power shape. 

The previous discussions assume that there is no thermal-neutron leakage from the 
reactor (K1 = K2,2= 1). The effect of the reflectors on the maximum and average fuel 
content req&ed are illustrated in figures 7 and 8, respectively. The required fuel con­
tent is given as a function of the thermal-neutron albedo at the inlet K192 and outlet 
K2,2 ends of the reactor. When the reactor is unreflected or when the two reflectors 
a re  identical, the maximum-fuel content is required at the inlet ends of the reactor. As 
more reflector is added to the inlet end of the reactor (K192 increases), a point is 
reached where the maximum-fuel content will be required a t  the outlet end. For example, 
in figure 7 for no reflectors (Ka,= K2, = 0), the maximum-fuel content (about 0. 53 
cm-l) is required at the inlet end of the reactor. As more reflector is added to the inlet 
end, K192 can be increased to 1.0, and there is no thermal-neutron leakage from the 
inlet end. The fuel content required at the inlet is about 0.07 reciprocal centimeter. 
However, the fuel content required at the outlet end is about 0 . 3 3  reciprocal centimeter 
because no reflector has been added there. Further improvements in the inlet-end re­
flectors have little effect on the fuel content required at the outlet end. The outlet-end 
reflector must be modified to increase K272 before the maximum-fuel loading can be 
reduced further. It should be noted that the thermal-neutron albedo is limited: it de­
pends on the reflector size and material, but can generally have values between zero and 
slightly greater than one. 
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120 centimeters; thermal-hydraul ic factor, B, 1. 
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CONCLUSIONS 

When reactor power is limited by fuel-centerline temperature, the power can be 
increased by tailoring the power distribution. The power gain depends on the operating 
conditions. However, the power in an unreflected reactor could be increased by at  least 
50 percent if the optimum axial-power shape can be obtained. The optimum axial-power 
shape yields a constant fuel-centerline temperature. When the convective-film coeffi­
cient in the reactor is constant, the optimum axial-power shape is of exponential form. 

Generally, the axial-power shape required to maintain a constant fuel-centerline 
temperature is flatter when the coolant-temperature r ise  is small. 

The axial-power distribution can be tailored by proper distribution of the fuel and by 
proper design of reflectors a t  the coolant inlet and outlet ends of the reactor. When the 
two reflectors are identical, the maximum-fuel loading is required at  the coolant inlet 
end of the reactor. As with unzoned reactors, larger fuel concentrations are required 
for small reactors than for large reactors. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, April 10, 1968, 
120-27-06-17-22. 
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APPENDIX A 

AXIAL POWER DISTRIBUTION REQUIRED TO OBTAIN 

CONSTANT- FUEL-TEM PERATURE DIST RIBUTION 

The axial-power distribution required to produce a constant fuel-centerline tempera­
ture is determined by calculating the axial-temperature distribution as a function of the 
unknown axial-power distribution. The functional form of the temperature distribution is 
differentiated with respect to the axial distance; this derivative is allowed to vanish (con­
stant temperature), and the resulting differential equation is solved to determine the 
optimum axial-power distribution. 

The axial-temperature distribution is calculated for a reactor fuel rod (see fig. 9) 
operating at steady state and cooled by an incompressible coolant. The fuel assembly is 
cylindrical, the thermal conductivity is constant, and the length is much greater than the 
diameter. The temperature distribution in the fuel element is described by the Poisson 
equation: 

e
I I

1 


I 


lcoolant 111 

channel 

Figure 9. - Reactor fuel rod. 
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a2e 1 ae a2e - Q(R,X)- + - + - - ­
aR2 R aR 3x2 kM 

(A 1) 

following substitutions:This equation can be nondimensionalized to unit order by the 

The governing equation in terms of the dimensionless parameters is 

n n 

R~ ar Rzro ar (AX)2 ax2 kM 

Where q(r,x) is Q(R,X) expressed in terms of the nondimensional variables r and x. 
All variables are of unit order, and Ro/AX << 1. When the axial-heat loss is small 
relative to the radial-heat loss, equation (A2) can be approximated by 

ar2 r a r  e m d M  

For a solid rod, heated internally and cooled externally, the following boundary condi­
tions are used: 

dT- = 0  at r = O  
d r  
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T =T( l ,x)  at r = 1 

The temperature anywhere within the rod is 

T(r,x) = T(1,x) + {/'[crq(r,x)dr]$} 
k ~ e m =  r 

The temperature along the axis of the fuel rod is 

T(0,x) = T(1,x) + 

Let the volumetric heating rate be expressed as the product of a function of r,H(r) 
and a function of x,Y(x). This relation is substituted into equation (A5). 

T(0,x) = T(1,x) + R'Y(x) {I1[JrrH(r)dr] $} 
kMemax 0 

The temperature at the surface of the fuel rod T(1,x) is equal to the local bulk-
coolant temperature Tc(x) plus the temperature rise across the convective coolant film. 
The local bulk-coolant temperature can be expressed in terms of the coolant-temperature 
rise. 

where m(x) is the fraction of the total fuel-rod power generated up to axial position x. 

m(x) = 

Y ( x ) d x l l  rH(r)dr llx2llx2 Y(x)dx 
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The temperature rise across the convective coolant f i l m  can be expressed by 

where n(x) is the ratio of the local to axially averaged power generation in the fuel rod. 

. .  
H ( r ) l x 2  Y(x)dx llx2y(X)dX 

x1 


Therefore, the temperature at the surface of the fuel rod T(1,x) can be expressed by 

When equation (A7) is substituted into equation (A6) 

R t Y ( x ) L  [LrrH(r)dr]er 

+ + 
T2 - T1 2nRohAX{lx2 X Y(x)dX 

The total coolant-temperature r ise  can be expressed by 

2 
T2 - T1 = 2nRoAx llx2Y ( x ) d x l l  rH(r)dr 

FCp'max 

When equation (A9) is substituted into equation (A8), the result is 
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and 

(A 10) 

This equation can also be expressed in terms of dimensionless Reynolds, Prandtl 
and Nusselt numbers. 

Y(x)dx ~ ~ T R ~ A X / ~ ~ ~  kMDeL1  rH(r)drT2 - T1 LIX2 Y(x)dx 
X 

Equation (All)  can be rewritten in the following form: 

T2 - T1 &x2 Y(x)dx JlX2 Y(x)dx 
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- -  - 

where 

P =  

B =  RePrSDe 1 
8nRoAX Nu 

kMDeA rH(r)dri-+ 
The axial-power distribution Y(x) required for a constant fuel-centerline tempera­

ture is determined by allowing the derivative of the temperature to vanish. 

The coolant properties depend on the coolant temperature. Therefore, the film coeffi­
cient and depend on the coolant temperature. 

The bulk coolant temperature at any axial position can be expressed by 

2aR0AX2 
e = e l +  A' rH(r)drJX Y(x)dx 

FCP x1 

2nRoAX2 x' rH(r)dr Y(x)
dx 

FCP 

The functional relation between and temperature can be approximated by 
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dY 

(1) calculating values of p for  various values of coolant temperature 
(2) fitting the values of p to a polynominal in coolant temperature. 

p =ao+ ale +a282 + ... + anOn 

dp-= a1 + 2a20 + 3a38 2 + ... + nane n- 1 
de  

When equations (A18) to (A20) are substituted into equation (A15), the result is an 
equation describing the axial-power distribution Y(x) as a function of distance along the 
coolant channel x in integral-differential form. This equation can be solved in closed 
form when (3 is constant. For most incompressible coolants such as water and liquid 
metals, p can be approximated, over the temperature range of interest, by either a 
constant or  a linear function of coolant temperature. When p is a linear function of 
coolant temperature, 

When equation (A18) to (A20) a r e  substituted into equation (A15), the differential equation 
describing the axial-power shape is 

p - +  [l + a ! Y Y = O  
dx 1 1  

where 

2na R iAX 
a1 = 4' rH(r)dr 

FCP 

The meaning of cy1 can be more easily recognized by substituting the temperature de­
rivative of equation (A13) into equation (A22). The temperature derivative of equa­
tion (A13) is 

FCp d (A)
- = a l =  2?rR0AX dT hd e  
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When this is substituted into equation (A22), the result is 

cyl  = [..A1 rH(r)dr]-- d (-)1 
d8 h 

Therefore cy l  is a measure of the change in the film coefficient along the length of the 
fuel rod. Comparing equations (A15) and (A21) results in 

9 = alY(x)
dx 

$ p  dp = alJx Y(x)dx 
P1 x1 

The function p can then be expressed as 

where p1 is evaluated from equations (A13) or (A19) using physical property data eval­
uated at the coolant-inlet temperature. When the axially averaged power distribution is 
normalized to one 

x2 - x1 

By definition, 

x2 - x1 = 1 

Therefore, 

LlX2 Y(x)dx = 1 
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and 

When al<< pl, the solution of equation (A21) can be approximated by 

lY PY(1+alY) =%"dy 

the solution is 

where Y1 is the relative power at the coolant-inlet end of the reactor. Since 

L l X 2  Y(x)dx = 1 

Y1 can be expressed in terms of al and p as follows: 

1 - exp( . )  
Y1 = alp(-;)- 1] 

The power distribution in the fuel rod that yields a constant fuel-centerline temperature 
is 
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With this power distribution, the coolant-temperature rise (0, - el) and reactor power 
Pe may be expressed as functions of the fuel temperature limit 6, using equation (A12). 

-1 

e 2  - e l  = (e, - 11- a p ( . ) ]  + a l p - eXP(- ;I} 
pe = (e, - e2) FC Q! 1 - exp (-;)

P 1  

When the film coefficient does not vary along the length ( 1 the fuel 

and 

Yl =(Be- exp (;)I} -1  

The axial power shape required to produce a constant fuel-centerline temperature is of 
the following exponential form. 

(x - x1)
Y(x) = Y1 exp -

P 
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The coolant temperature rise and reactor power are 

The reactor power that can be achieved by power tailoring can be compared with the 
power from a reactor having a constant fuel and neutron absorber distribution. A con­
stant fuel and absorber distribution yields an axial-power shape which is symmetric 
about the reactor midplane and can be described by a cosine function when the origin of 
the coordinate system is located at the reactor midplane. In this study, however, the 
origin of the coordinate system is assumed to be above the coolant-inlet end of the re­
actor as shown in figure 9. Although the axial-power shape is called a chopped cosine to 
conform with convention, it is described in equation (A32) as a sine function. 

Y(x) = np sin(;) 

The maximum-fuel temperature and reactor power in a reactor having a chopped 
cosine power shape is calculated using the same methods used to derive equation (A31). 
In this case, however, the axial-power shape is known and the position of maximum 
temperature x must be determined in order to evaluate the maximum-fuel temperature 
from equation &12). When equation (A32) is substituted into equation (A12) and evaluated 
at the position xP 

of maximum temperature the result is 
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T2 - T1 -

The position of maximum temperature is determined by substituting equations (A32) and 
(A33) into equation (A15). It is assumed that the film coefficient is constant, that is, 
dp/dx = 0. The result is 

Using this equation and the trignometric identities yield 

s i n 2  = s p n  2)-G) ( 2  p2 + x 3  

= -x3(s2p2cos(5) - 1/2 

The maximum temperature is determined by substituting the values from equa­
tions (A35) and (A36) into equation (A34). 

T2 - T1 cos(:)-
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With a cosine power distribution, the coolant-temperature rise (6, - el)  and reactor 
power Pd can be expressed as a function of the fuel-temperature limit OL: 

e ,  - e l  = 

Pd = 
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APPENDIX B 

AXIAL-POWER TAILORING BY VARYING AXIAL-FUEL DISTRIBUTION 

The method used to determine the fuel distribution required to obtain an exponential 
power shape is similar to the one discussed by Goertzel and Loeb (ref. 1). The axial 
neutron-flux distribution is calculated as a function of the known exponential source 
(power) distribution using a one-dimensional, twp-energy group neutron-diffusion model. 
The required fuel distribution is proportional to the power distribution divided by the flux 
distribution. The reflector is simulated by specifying the neutron albedo at both ends of 
the reactor. The neutron population in a unit volume of the reactor can be approximated 
for each energy group by 

where the subscripts 1and 2 refer to fast and thermal energy groups, respectively. In 
the fast group, neutrons are produced in a unit volume by fissions and are depleted from 
a unit volume by leakage and by slowing down in the moderator. In the thermal group, 
neutrons are produced in a unit volume by slowing down the fast neutrons. They a r e  de­
pleted by leakage, absorption in the fuel material and absorptions in the nonfuel mate­
rials. The neutron diffusion equations can be rewritten as a function of the desired 
source (power) distribution 

. .  
dx2 

where 
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t 

2 D2= -L2 

The solution to the first equation is 

The first term on the right is the solution of the homogeneous equation. The second term 
is a particular solution. The solution of the homogeneous equation is 

The particular solution can be found using operator notation. 

(.'- -$:(IC) = -G(X) 

L1 

where 
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- - (. 30+ -4qf(X) = -G(X) 

Let 

u = (0 - l)q:(x) 
L1 

(3 +L.) u = -G(X) 

u = - e x p ( z ) l  G(X)exp(e)dX 

xo 

The lower limits, Xo and Xoo, may be arbitrarily selected to yield the most convenient 
solution. Any particular solution is acceptable provided it satisfies equation (B3). 
Therefore, 

When G(X) is an exponential of the form 
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The following limits are selected: 

Xo = O  and Xoo=m 

The solution of equation (B12) is 

where A2 is equal to AH plus terms derived from the particular solution 'plP(8. 
The boundary conditions are established by specifying the albedo at the coolant-inlet 

end of the reactor K 191 and at the coolant-outlet end K2, 1. The neutron albedo for any 
energy group is defined as the ratio of the neutron partial current entering the reactor to 
the neturon partial current leaving the reactor. 

The neutron current can be expressed by 

+' ' 4 2 d x  
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When these equations are substituted into equations (B15) and (B16), 

These equations a,re solved to determine A1 and A2. 

- Y1L:- -A2 
y2L; - 1 

2 2Y L 1 - 1  
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4 2L1 

' 3  4 2 

For the thermal neutron flux 

G1(X) = -1y1 exp(-yX) - 5kle x p ( 3  + A2 exp[ e)- L;Y 1 exP(-YX) 

2 2D27 D2 Y L 1 - 1  

As in equation (B l l ) ,  
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r 1 

+ A4 eXP(.) + 

P
where A4 is equal to A i  plus terms derived from the particular solution ‘p2 (x). The 
constants A3 and A4 are determined by specifying the thermal neutron albedo at both 
ends of the reactor. 

- . ,  
4 2 d x  

The constants A3 and A4 are determined by simultaneous solution of these equations. 

A3 = eXP(2)  
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j 

A4 = 

*9*ll=+ x2 L2 ­- x1)-*,I1j 
-

I 

4 L2 

w o  = + 
' 0  4 2 d x  

where 

2 1 zRL1 exp(-yX)
y1+ + 2L12 :j 
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The fuel distribution required to obtain the desired power distribution G(X) is 

G(X) can be related to the exponential power distribution Y(x) derived in appendix A 
(eq. (A29)). From equation (B13) 

and from equation (B6) 

Equation (B6) can be rewritten as 

where Zfq2 is the axially averaged fission rate and 

is the local-to-average fission rate that is also equal to the local-to-average power 
density Y(x)/Y of equation (A29). 

The expression Y(x)/Y must be converted from the nondimensional variable x to 
the dimensional form 
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X =  X 

x2 - x1 

Therefore 

A comparison of equations (B13) and (B34) results in 

y 1 =  vcf'pz exP[;(x27x,llQlf - exP(- ;)I} -1  

The average fission rate can be expressed in terms of the radial component of the volu­
metric heating rate H(r) a s  follows: 

Equation (B36) becomes 
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APPENDIX C 

SYMBOLS 

constant used in equations de­
scribing fast and thermal neu-

np 
tron flux, neutrons/(m 2)(sec) 

coefficients in polynominal de­
scribing p as function of tem- 'd 
perature, K-1 

specific heat of coolant, J/(kg)(K) 

neutron diffusion coefficient, m 'e 

equivalent diameter of coolant 
channel, m 

Pr 
mass flow rate of coolant, kg/sec 

radial power distribution in fuel 
Q 

element, w/m 3 

forced convection film coefficient, 
Q/A

W/(m2 1(K) 
neutron partial current in positive 

direction, neutrons/(m 2)(sec) 
q 

neutron partial current in nega­
tive direction, R 
neutrons/(m 2)(sec) 

neutron albedo at position i for RO 

energy group j Re 

thermal conductivity, W/(m) (K) r 

neutron diffusion length for energy S 

group j ,  m 

fraction of total fuel rod power T 

generated up to axial position x X 

NusseIt number AX 

ratio of local to axially averaged X 

power generation 

ratio of maximum to axially aver­
aged power generation rate for 
reactor with "chopped cosine" 
axial-power shape 

total reactor power output with 
cosine axial-power distribution, 
W 

total reactor power output with 
exponential axial-power distri­
bution , W 

Prandtl number 

volumetric heating rate expressed 
in dimensional space variables, 
w/m3 

average heat flux from surface of 
fuel rod, W/m 2 

volumetric heating rate expressed 
in dimensionless space vari­
bles 

dimensional radial field point, m 

outer radius of fuel element, m 

Reynolds number 

dimensionless radial field point 

wetted perimeter of coolant 
channel, m 

dimensionless temperature 

dimensional axial field point 

reactor length, m 

dimensionless axial field point 



Y1 relative local power at inlet end 
of reactor 

Y(x) relative axial power distribution 

cy1 factor defined by eq. (A22) 

P thermal-hydraulic factor defined 
by eq. (A13) 

Y exponential coefficient used to de­
scribe axial-power shape, m - l  

E energy released per fission, J 

rl number of neutrons produced per 
thermal neutron absorbed in 
fuel 

8 dimensional temperature, K 

prescribed temperature limit for 
fuel, K 

V number of neutrons produced per 
thermal fission 

'a macroscopic absorption cross 
section for thermal neutrons, 
m-

Cf macroscopic thermal-neutron 
fission cross section, m - l  

=R removal cross section for fast 
-1neutrons, m 

neutron flux for energy group j ,  
neutrons/m 2-sec

* arbitrary constant 

Subscripts: 

C coolant 

f fission 

M fuel 

R removal 

1 inlet end of reactor or  fast-
neutron energy group 

2 outlet end of reactor or  thermal-
neutron energy group 

3 extrapolated distance to zero neu­
tron flux 

Superscripts: 


F fuel material 


N nonfuel materials 


39 




REFERENCES 

1. Goertzel, G. ; and Loeb, William A. : Nonuniform Fuel Distributions in Nuclear 
Reactors. Nucleonics, vol. 12, no. 9, Sept. 1954, pp. 42-45. 

2. Bussard, R. W.; and DeLauer, R. D. : Fundamentals of Nuclear Flight. McGraw-
Hill Book Co., Inc., 1965, p. 240. 

3. Barth, N. H.; and Halling, R. K. : Power Flattening Techniques Boost BWR Core 
Capabilities. Nucleonics, vol. 23, no. 5, May 1965, pp. 72-77. 

4. Maghreblian, Robert V.; and Holmes, David K. : Reactor Analysis. McGraw-Hill 
Book Co., Inc., 1960, p. 461. 

5. Anon. : Reactor Physics Constants. Rep. ANL-5800, Argonne National Lab., July 1, 
1958, p. 154. 

40 NASA-Langley, 1968 -22 E-4365 



I I l l  I IIIII II Ill1 I I  

NATIONAL AND SPACE ADMINISTRATION POSTAGE AND FEES PAIR2AERONAUTICS 
D. C. 20546 NATIONAL AERONAUTICSWASHINGTON, 

SPACE ADMINISTRATIONS 
OFFICIAL BUSINESS FIRST CLASS MAIL 

If Undeliverable (Section 15,
Postal Manual) Do Not Retu 

.. --

“The aeronautical and space activities of the United Staies shall be 
condzicted so as to contribute , . , to the expansion of hzinzan Knowl­
edge of phenomena in the atmosphere and spuce. T h e  Administration 
shall provide for the widest practicable and appropriate dissenzinatioiz 
of inforiiiation concerning its actitdies and the resrdts thereof.” 

-NATIONAL AERONAUTICSAND SPACE ACT OF 1958 

, . q. 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and 
technical information considered important, 
complete, and a lasting contribution to existing 
knowledge. 

TECHNICAL NOTES: Information less broad 
in scope but nevertheless of importance as a 
contribution to existing knowledge. 

TECHNICAL MEMORANDUMS : 
Information receiving limited distribution 
because of preliminary data, security classifica­
tion, or other reasons. 

CONTRACTOR REPORTS: Scientific and 
technical information generated under a NASA 
contract or grant and considered an important 
contribution to existing knowledge. 

TECHNICAL TRANSLATIONS: Information 
published in a foreign language considered 
to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information 
derived from or of value to NASA activities. 
Publications include conference proceedings, 
monographs, data compilations, handbooks, 
sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA that may be of particular 
interest in commercial and other non-aerospace 
applications. Publications include Tech Briefs, 

Utilization Reports and Notes, 
and Technology Surveys. 

Details on the availability of these publications may be obtained from: 


SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 


NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Washington, D.C. 20546 

~ . ... .. .. ..... . .._. . . .  . . .. 


